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I. Introduction

Ignoring spins, j-:the canonical procedure for introducing a

static magnetic field into the electronic Hamiltonian \ -
; v -y '
“0"' % 2 2] P:) + A\ = T &V (1)

S
is to make a substitution for f,

P BrrAM) @

->
vhere A 1is the vector potential and q is the electronic charge

(‘IO) . This substitution yields the Hamiltonian

H= Ye+h +H~ (3
where
] -—9."’ - :"
W= Z :z‘-;ﬁvz( )t AlH) + ALR)+Py) | )
and

2 v, -~y
Hoa 23 ) ‘A%)' Al%) (3)

'Tlié"réplacélﬁent (2) is said to be a gauge invariant one 1in
_ e

that a subsequenﬁ gauge transformation on ;x:
-ty - N V 6
A[%) — AlH) + ;7)3 A ©

1 Here A. can be any real function of the particle coordinates.
In what follows we will refer to a proper gauge transformation if A

takes the special form A= ?’: x(%)
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so that (6) becomes o
-, N
A('ﬁj) — A("Q) + vg»‘[;;i‘)
corresponding to a real electromagnetic gauge transformation

ALY = AMH) T 3 (F)

- -

can be undone by a unitary transformation and hence has no effect on
the energy eigeﬁval_ues.2 Namely, the effect of the transformation (6)
is to replace H by

) / /
H = HotWi +Ha (7)

where HI and H

1
(6). One then readily shows that

;' are derived from H1 and H, by the substitution

2

W= 0" 4u (8)
where
»%A_
L= e % | (9)
AS

is clearly a unitary operator igywe assume1 s 1\.13 real

Usually the main point made in deriving (8) is the proof that

ot -y - . & -y -
VIR + 1 RENU = 7 ¢8R +1 7,4

which, of course, is true. We would like here to emphasize another

point - the proof of (8) also involves showing that
v¥vu =V | | (%)

- A - =
For a local potential, i.e., if V ""i VE# 1) ""(*‘ *a)

This last statement assumes that the unitary transformation is con-
sistent with boundary and regularity conditions, See Y. Ahranov and
D. Bohm, Phys, Rev, 115, 485 (1959), and R. C, Jaklevic, et al,
Phys. Rev. Lett 12, 274 (1964),




it is false. We discuss this further in the next section.

II. Non-Local Potentials

First of all let us note that suéh potentials do occur both
explici;ly and implicitly: ]
(A) In.thé coupled (unrestricted) Hartree-Fock method3

(B) 1In the uncoupled Hartree-Fock method3
(C) In any one-electron theory for which the zero field one-
electron orbitals are not allleigénfunction of a single local one~

electron Hamilt onian4 .

Now for a non-local potential, (¥ ) implies

: 3R - b A["'l"'"ﬁ\)
{‘h ACh=™) (7.—-— 1“' vi %‘""”:l) ¢ g‘; = (# —-i.lVl‘*‘"* )

which is in general false (unless V  is local, i.e,,

(B VIR~ 5, R oo 5T

Thus we conclude that if Ho contains a non-local potential then when
we introduce a magnetic field we must, in addition to the

substitution (2),
See A. Dalgarno, Adv. in Phys. 11, 281 (1962) for an explanation of
the terminology.

Given N orthogonal one-electron-functions ‘fl_ ) then in general
there is no local V' such that (‘ - SR I = €L ot Al -
However, one can always find a non-local ¥ (see S.T. Epstein,

J. Chem. Phys. to be published).




make a substitution5

V- Va ,
. Vh"!h
in such a way that under a further gauge transformation (6),Ywhere
{

/One immediate consequence of this discussion is that the

uncoupled Hartree-Fock approximation is intrinsically not gauge

invariant since the non-local potential is fixed independently of
the magnetic field.f
Further, other one-electron theories of magnetism (Pople, Hameka,

Karplus, etc.) may or may not be intrinsically gauge invariant

depending on the choice of unperturbed orbita134’6.

On the other hand (as is known, at least for special cases7)ithe
coupled (unrestricted) Hartree-Fock theory is invariant to proper
'gauge transformations just because the non-local potential does

respond to the magnetic field, We will give an elegant prooféof this

> There are many ways of doing this. We will not discuss this
further here. See Y. Yamaguchi, Phys. Rev. 95, 1628 (1957),

section 4 and references given there.

Such theories often involve many other approximations (See for
example the exchange between H. F. Hameka and J. A. Pople, J. Chem.
Phys. 37, 3008, 3009 (1962)), It would be interesting to test these
on the one-electron 2~coulomb-center problem where accurate

analytical calculations seem feasible.

See for example, R. M. Stevens, R. M. Pitzer, and W. N. Lipscomb,
J. Chem. Phys, 38, 550 (1963).
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in the next section. A direct proof follows from the observation that

the non-local part of the one-electron Hamiltonian. v8 jusf

kel M. g
(TIiopg\#D = 2,;: PuiF 2 @n () iF -

Now under the transformation (8) wave functions change according to
¢

= Uty .

. t %‘).(t)

so that, specializing to a one-electron problem with: U= ¢ 2

we have
% »
G = Z e (Dt P /123
" .

-8 n(F) ch
= e W (Floaa™Me ™

“(1)

or

ITI. Gauge Invariance of Variational Calculations

In a general way one can ask the question, under what circum-

stances will the variational principle ST°° where
~a A, ™
I= (q') CH —E) q")
.
’ : !
yield the same energy as the variation principle 63 20 where
~ (R R
3'= (¥, (w-F)¥)

¥ ?

and where we use the same set of trial function"" Using (8)

to write

I‘:— (VCI: y CH - U?’:)




. we have the answer: A sufficient condition for invariance to the

‘ ~
gauge transformation U is that the set of trial functions U ¥

: ~
be identical to the set WY . As an immediate consequence we have
-~

the gauge invariance of the exact solution (the set ql includeg'all

functions") and the invariance of unrestricted Hartree-Fock solution
to proper gauge transformations (if 4’ is a determinant so is\J*'

, -
when /\ is a proper gauge transformation’).
Now let us suppose that for some class of gauge transformations,

depending say on arbitrary parameters or arbitrary functions, it is

~
not true that the set \)‘¥ is the same as the set ¥ . Then we
may ask, émong the set of gauges under consideration, is there some
optimal gauge in which to do the calculation?9 The answer which

suggests itself is - choose the gauge such that small variations
~ -
around it yield no variation in € s 1.e., require a sort of local

or first order gauge invariance within the set of gauges under

consideration. Thus we require

( € 6w &) =o0 an '

- o

8 Here ¥ is a trial function, and B  the trial energy. The
variation is to be carried out with ?{ fixed. if is then
determined from J=20.

? This question has been discussed by many people, mainly in a semi-

empirical fashion. See for example reference 7.

10 This condition ensures local gauge invariance to all orders in the

field, Since usually one is interested in at most second order in
the field, a perturbation analysis of (12) would be appropriate. We
will not pursue this here,




in addition to the usual

(8%, (0" -T1¥F) =0 i (F,W-T)E20 @

'
which follow from 63 =20
Another question now arises - to what extent is& the result of
s
this procedure actually gauge invariant, i.e., independent of the A

from which we started? The answer follows directly from the

observation that (12) and (13) are equivalent to
N oy . - V
B(U‘P,(H—E)U‘P) =0 . (14)

- A
where we vary both Yasmd ¥ .| From the discussion at the
beginning of this section it follows then that our results will be
invariant to a further gauge transformation

- - —» /
Ak~ A + VY, N

~

1 (o V)
if the set U U W is the same as the set UW

IV. Connections with other work.

In this section we wish to make connections between eq. (12)

and results proved by other authors, principally Rebanen; Das and

Bersohn12 and Kar_plus and Kolker13.

11 1. XK. Rebane, J.E.T.P., 11, 6% (1960).

12 T. P. Das and R. Betsohn, Phys. Rev., 115, 895 (1959).

References to earlier works by other authors are also given

in this paper,

13 M. Karplus and H. Kolker, J. Chem. Phys., 38, 1263 (1963).




(A) Not surprisingly eq. (12) is equivalent to a hypervirial

theoremm. Namely, from (8) and (9) one readily derives
, . \
sy X LW, 8A7)
®e
whence (12) becomes

(&, TW,8A) ¢) =0 (15)

o~
(B) We now restrict ourselves to situations in which the set' W

’ /
and in which \/ is local so that H 1is correctly given by (7).

Thus (12) can be written

5CYo, 0 ¥2) =0 | (16)

We now show that this is Rebane's variation principl:e. Namely, since
H, is fixed §(%,Ho'y) B O . Further Hll is a pure

!
imaginary Hermitian operator whence, if ‘i’o is real, (\&o,\l,\\’p)-‘io

Thus (16) becomes

§(¥o, He V) =0 an

which is exactly Rebane's principle (we may note, however, that in
Rebane's discussion *’o was assumed to be the ground state eigen-
function of Ho ). In words, we are instructed to choose the gauge

in such a way as to minimize the diamagnetic energy contributions

S. T. Epstein and J. 0. Hirschfelder, Phys, Rev. 123, 1495 (1961).
See especially footnote 3,




from H,. 15.

(C) Using the explicit form for Hzl , arbitrﬁry variation of
in (16) leads to a differential equation for A = Rebane's.
differential equation. An interesting alt;rﬁative derivation can be
based on (1l5) with $= ‘l’o : Since SA is a function only

of coordinates we have

Tw'SA] = Cie,5A1 + Tu/,8A1

and since further . - Ho,&/\] is a pure imaginary Hermitian

operator it follows that (15) becomes

(""01 t'“"7 8AY %) =0

If this is to be true for arbitrary O A it thIizs

See algo S. I. Chan and T. P. Das., J. Chem. Phys. 37, 1527 (1962).
In connection with their discussion note, however, that with our
approximation g'= (%o, B W) = (e, Hotg)y Lo, 0/ ©) i.e.
we have only a diamagnetic contribution from H,' though from K

we get both paramagnetic and d;amagnetic contributions (see (D)
below).
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(D) Since H2 is a fixed operator (1l7) can also be written

o (\l’o) (Wal = M) V) =0 (18)

Then using the fact that L\ 1is ‘a function only of coordinates

one readily finds from (8) and (9) that

. ™.
HJ— Ha = -L-‘E{ EH».,Al" t(%b] LA)tA)“")]
whence (18) becomes

§ (W, 1% tw, D =1 (R 1A, 1A wd1}e) =0 a9

If one now assumes that Ho \\’09 Fo 'J"o then this is exactly
the variation principle used by Das and Bersohn12’16. Namely, if
HESL s '
one introduces W = "‘? A \lfo then (19) can be written
¢

in the more familiar form
ST (4, ¥7) + (390 &) + Y (Hg—-ﬁo):l:"")]zo (20)

which is the form used by Das and Bersohn. As is well known it yields

D
an upper bound (for the ground state) to € , the second order

contribution _of Hl (the "paramagnetic" contribution).

However, although Das and Bersohn use (20) they do so with an

16 The relationship of the Das and Bersohn approach to the Rebane

approach which we have found as a by-product of our investigation
has been pointed out before.. See, for example, S. K. Ghosh and
S. K. Sinha, J. Chem. Phys. 36, 737 (1962).




"approximate" ‘{'o ; one which is not an eigenfunction of Ho. Thus
y)

they do not calculate an upper bound to € but only some less

well controlled approximation to itU. Also, note that if *o is

not "exact" then (19) is not equivalent to (20), and hence not

equivalent to Das and Bersohn,

meu.ssm'a‘%

(E) For a general ‘\‘o , one which is not Yan eigenfunction of

Ho s (19) is, however, exactly the variation principle proposed by
Karplus and Kolkern. To see this we remark that we can always
consider \h to be the eigenfunction of a Hamiltonian *05 T“‘Vo
with eigenvalue Eo where V is local [ See R. Sternheimer,

Phys. Rev. 96, 951 (1954)) . Then since T A,Wol =

CA, T3 = TA,#1 b poliews +Hhst 320, (\q)

is equivalent to a result of the form (20) but with Ho and £ o
replaced by f{o and 54 respectively., Thus what we would
calculate from (19) would be an upper bound to the sécond order
contributions of H, for the "atom" or "molecule" defined by f{ o'
This is not an upper bound for the actual system but only some less
well controlled approximation to itla. Indeed, it is exactly the

approximation suggested by Karplus and KRolker,

17 The situation is somewhat confused by the fact that as, Das and

Bersohn show, even with an approximate “"o , (20) may well have .a
minimum property (for the ground state). However, the point is
that this minimum is not éu') , nor need it have any particular
relation to 6"'1') '
s : , , o~

Note, however, that the approximate total energy & is an upper

bound (for the ground state) to the exact total energy.
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